CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

ROBUST TUNING OF POWER SYSTEM STABILIZER USING ARTIFICIAL INTELLIGENCE

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۰ | تعداد نمایش خلاصه: ۱۰۵۹ | نظرات: ۰
سال انتشار: ۱۳۷۷
کد COI مقاله: PSC13_016
زبان مقاله: انگلیسی
حجم فایل: ۱۴۲.۲۸ کلیوبایت (فایل این مقاله در ۱۰ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۰ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله ROBUST TUNING OF POWER SYSTEM STABILIZER USING ARTIFICIAL INTELLIGENCE

Mojtaba Khederzadch - Department of Electrical Engineering, Power & Water Institute of Technology, Tehran, IRAN.

چکیده مقاله:

Tuning of power system stabilizers (PSS) over a wide range of operating conditions and load models is investigated using an artificial neural network (ANN). The neural net is specially trained by an input-output set prepared by a novel approach based on genetic algorithms (GA). To
enhance power system damping, it is desirable to adapt the PSS parameters in real-time based on generator operating conditions and load models. To do this, on-line measurements of generator loading conditions are chosen as the input signals to the neural network. The output of he neural network is the desired gain of the PSS that ensures the stabilization of the system for a wide range of load models connected to the power system. For training the neural network a set of operating conditions is chosen as the input. The desired output for any input is computed by simultaneous stabilization of the system over a wide range of load models using genetic algorithm. In this regard, the power system operating at a specified operating condition and various load models is treated as a finite set of plants. The problem of selecting the output parameters for every operating point which simultaneously stabilize this set of plants is converted to a simple optimization problem which is solved by a genetic algorithm and an eigenvalue-based objective function. The proposed method is applied to a test system and the validity is demonstrated through digital simulations.

کلیدواژه‌ها:

artificial neural network (ANN), genetic algorithms (GA), power system stabilizer (PSS), load model

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-PSC13-PSC13_016.html
کد COI مقاله: PSC13_016

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Khederzadch, Mojtaba, ۱۳۷۷, ROBUST TUNING OF POWER SYSTEM STABILIZER USING ARTIFICIAL INTELLIGENCE, سیزدهمین کنفرانس بین المللی برق, تهران, شرکت توانیر, پژوهشگاه نیرو, https://www.civilica.com/Paper-PSC13-PSC13_016.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Khederzadch, Mojtaba, ۱۳۷۷)
برای بار دوم به بعد: (Khederzadch, ۱۳۷۷)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Yao-Nan Yu, "Electric Power System Dynamics New York, Academic Press, ...
  • F. P. DeMello and T. F. Laskowski, Concepts of power ...
  • F. P. DeMello and C. A. Concordla, "Concepts of synchronous ...
  • E. V. Lareen and D. A. Swann, "Applying power system ...
  • Y. Y. Hsu and C. Y. Hau, "Design of a ...
  • Y. Y. Hs u a n d C. C. S ...
  • K. A. Ellithy and M. A. Choudhry, "Effect of load ...
  • E. Vaahedi, H. M. Zein El-Din and W. W. Price, ...
  • W. Mauricio and A. Semlyen, "Effect of load cha racteristics ...
  • IEEE Computer Analysis of Power Systems Working Group, System load ...
  • T. Ohyama, A. Watanabe, K. Nishimura and S. Tsurata, "Voltage ...
  • Wen-Shlow Kao, C. J. Lin and C. T. Huang, "Comparison ...
  • P.M. Anderson, A.A. Fouad , "Power System Control and Stability', ...
  • D. E. Goldberg, "Genetic algorithms in search, optimization and machine ...
  • P. J. Fleming and C. M. Fonseca, "Genetic algorithms in ...
  • J. Stanley, Vntroductlon to neural networks", California Scientific Software, Siera ...
  • R. Hecht-N ielsen _ 'Theory of the backp ropagation neural ...
  • A. Lapedes and R. Farber, "How neural networks work", Neural ...
  • D. E. Rumelhart and J. L. M c C 1 ...
  • P. K. Simpson, "Artificial neural systems: Foundations, Parad ig _ ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.