CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Short Term Load Forecasting Using a New Time Series Modelling

اعتبار موردنیاز: ۱ | تعداد صفحات: ۱۰ | تعداد نمایش خلاصه: ۱۵۱۳ | نظرات: ۰
سال انتشار: ۱۳۷۸
کد COI مقاله: PSC14_124
زبان مقاله: انگلیسی
حجم فایل: ۱۳۲.۱ کلیوبایت (فایل این مقاله در ۱۰ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۱۰ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Short Term Load Forecasting Using a New Time Series Modelling

  NIMA AMJADY - Department of Electrical Engineering, Semnan University Semnan, Wan

چکیده مقاله:

This paper presents a new time series modelling for short term load forecasting, which can model the valuable experiences of the expert operators. This approach can accurately forecast the hourly loads of weekdays, as well as, of weekends and public holidays. It is shown that the proposed method can provide more accurate results than the conventional techniques, such as artificial neural networks or Box-Jenkins models. In addition to hourly loads, daily peak load is an important problem for dispatching centers of a power network. Most of the common load forecasting approaches do not consider this problem. It is shown that the proposed method can exactly forecast the daily peak load of a power system. Obtained results from extensive testing on the Iran's power system network confirm the validity of the developed approach.

کلیدواژه‌ها:

Load Forecasting, Time Series Modelling

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-PSC14-PSC14_124.html
کد COI مقاله: PSC14_124

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
AMJADY, NIMA, ۱۳۷۸, Short Term Load Forecasting Using a New Time Series Modelling, چهاردهمین کنفرانس بین المللی برق, تهران, شرکت توانیر, پژوهشگاه نیرو, https://www.civilica.com/Paper-PSC14-PSC14_124.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (AMJADY, NIMA, ۱۳۷۸)
برای بار دوم به بعد: (AMJADY, ۱۳۷۸)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • . S. Vemuri, W. L. Huang, D. J. Nelson, "On ...
  • . Moghram, S. Rahman, "Analysis and Evaluation of Five Short ...
  • . D. Srinivasan, C. S. Chang, A. C. Liew, Demand ...
  • . A. G. Bakirtzis, J. B. Theocharis, S. J. Kiartzis ...
  • . T. Masters, "Neural, Novel & Hybrid Algorithms for Time ...
  • . A. D. Papalexopou los and T. C. Hesterbcrg, "A ...
  • . W. R_ Christiaanse, "Short term load forecasting _ using ...
  • . F. Meslier, "New advances in short term load forecasting ...
  • . G. D. Irisarri, S. E. Widergren and P. D. ...
  • . G. Gross and F. D. Galiana, "Short term load ...
  • . A. S. Dehdashti, et al., "Forecasting of Hourly Load ...
  • . S. Rahman and R_ Bhatnagar, "An Expert system Based ...
  • . S. Rahman, "Generalized Kn owl edgebased Short-term Load Forecasting ...
  • . K. L. Ho, Y. Y. Hsu, C. F. Chen, ...
  • . G. Lam bert-Torres, C. 0. Traore, P. J. Lagace, ...
  • . L. X. Wang and J. M. Mendel: _ BackP ...
  • . N. Draper and H. Smith, "Applied Regression Analysis, " ...
  • . Samprit Chatterjee and Ali S. Hadi, Influential Observations, High ...
  • . Y. H. Pao, Adaptive Pattern Recognition and Neural Networks, ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۸۴۴۱
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.