CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۱۲۴۱ | نظرات: ۰
سرفصل ارائه مقاله: دیسپاچینگ و مخابرات
سال انتشار: ۱۳۸۲
نوع ارائه: شفاهی
کد COI مقاله: PSC18_040
زبان مقاله: انگلیسی
حجم فایل: ۱۲۴.۳۸ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach

Farzan Rashidi - Control Research Department, Engineering Research Institute of JERCEN, Tehran, Iran
Mehran Rashidi - Hormozgan Regional Electric Co. Bandar-Abbas, Iran
Hamid Monavar - Hormozgan Regional Electric Co. Bandar-Abbas, Iran

چکیده مقاله:

Load forecasting is an important problem in the operation and planning of electrical power generation. To minimize the operating cost, electric supplier will use forecasted load to control the number of running generator unit. Short-term load forecasting (STLF) is for hour to hour forecasting and important to daily maintaining of power plant. Most important factors in load forecasting includes past load history, calendar information (weekday, weekend, holiday, season, etc.) and weather information (instant temperature, average temperature, peak temperature, wind speed, etc.). The forecaster will treat past data as a time series and many kinds of approaches have been applied on this problem.
In this paper we present an application of emotional learning to short term load forecasting. Emotional learning is a family of intelligent algorithms which can be used for time series prediction, classification, control and identification. This method is applied to short term load forecasting for actual data. The method is relatively simple, and effectively uses historical data to provide load forecasts. Simulation results confirm good accuracy of the emotional learning approach to load forecasting.

کلیدواژه‌ها:

Load forecasting, Emotional learning, power system, critic, neuofuzzy

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-PSC18-PSC18_040.html
کد COI مقاله: PSC18_040

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Rashidi, Farzan; Mehran Rashidi & Hamid Monavar, ۱۳۸۲, Short-Term Load Forecasting in Power Systems Using Emotional Critic Based Fuzzy Approach, هجدهمین کنفرانس بین المللی برق, تهران, شرکت توانیر, پژوهشگاه نیرو, https://www.civilica.com/Paper-PSC18-PSC18_040.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Rashidi, Farzan; Mehran Rashidi & Hamid Monavar, ۱۳۸۲)
برای بار دوم به بعد: (Rashidi; Rashidi & Monavar, ۱۳۸۲)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • . S. Rahman and O. Hazim, ،0 A generalized knowledg ...
  • S. Rahman and G. Shrestha, *A priory vector based technique ...
  • . J. Fan and J. D. McDonald, ،0A Real-Time I ...
  • . G. N. Mbamalu and M. E. El-Hawary, _ Forecasting ...
  • . M. T. Hagan and S. M. Behr, ،0The Time ...
  • -Term Forecasting of Nodal Active and Reactive Short؛، [6]. D. ...
  • . Drossu and Z. Obradovic, *Rapid Design of Neural Network ...
  • . Tomonobu Senjyu, Hitoshi Takara, Katsumi Uezato, Toshihisa Funabashi, 4One-Hour- ...
  • . D.C. Park, M. A. El-Sharkawi, R. J. Marks II, ...
  • . J. S. McMenamin, F. A. Monforte, Using Neural Networks ...
  • . A. Khotanzad. M. H. Davis, A. Abaye, D. J. ...
  • . S. T. Chen, D. C. Yu, A. R. Moghaddamj ...
  • . Rashidi, F., Rashidi, M., Hashemi Hosseini, A., ،Emotional temporal ...
  • مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.