CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

پیش بینی کوتاه مدت باد با استفاده از شبکه های عصبی چندلایه آموزش یافته با الگوریتم PSO جهت کاربردهای توربین بادی

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۲۰۵۶ | نظرات: ۰
سرفصل ارائه مقاله: انرژی های نو
سال انتشار: ۱۳۸۶
کد COI مقاله: PSC22_284
زبان مقاله: فارسی
حجم فایل: ۳۱۲.۵۳ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله پیش بینی کوتاه مدت باد با استفاده از شبکه های عصبی چندلایه آموزش یافته با الگوریتم PSO جهت کاربردهای توربین بادی

  سیدعلی پورموسوی کانی - قطب علمی قدرت، دانشکده مهندسی برق دانشگاه صنعتی امیرکبیر تهران
  علی جهانبانی اردکانی - قطب علمی قدرت، دانشکده مهندسی برق دانشگاه صنعتی امیرکبیر تهران
  علی کاشفی کاویانی - قطب علمی قدرت، دانشکده مهندسی برق دانشگاه صنعتی امیرکبیر تهران
  غلامحسین ریاحی دهکردی - قطب علمی قدرت، دانشکده مهندسی برق دانشگاه صنعتی امیرکبیر تهران

چکیده مقاله:

این مقاله پیش بینی بسیار کوتاه مدت باد را جهت کاربردهای توربین بادی ارائه می دهد . با توجه به گسترش روزافزون استفاده از انرژی بادی در تولید جهانی انرژی و با توجه به ساختار نامطمئن و گسسته تولید انرژی بادی، پیش بینی در فواصل زمانی مختلف ضرورت می یابد . در این مطالعه، ازشبکه های عصبی آموزش یافته با الگوریتم تکاملی PSO جهت پیش بینی باد استفاده شده است . ساختار تغییرپذیر و معمولاً غیرمتناوب باد باعث می شود تا الگوریتم های آموزشی معمول جهت آموزش شبکه های عصبی که از روش های گرادیانی جهت آموزش استفاده می کنند، به خوبی نتوانند
فرآیند آموزش را کامل کنند . از طرفی هدف از آموزش شبکه های عصبی یافتن اندازه وزن ها و بایاس ها به نحوی است که خطای داده های آموزش را به حداقل برساند . لذا آموزش شبکه های عصبی را می توان در بردارنده یک مسئله بهینه سازی دانست . از آنجا که پیش بینی باد توسط شبکه عصبی تابعی پیچیده و غیرخطی است، لذا استفاده از روش های بهینه سازی در فرآیند آموزش شبکه های عصبی مورد توجه قرار می گیرد . داده های باد از منطقه ای در کشور دانمارک و با فرکانس 2/5 ثانیه نمونه برداری شده است . پیش بینی برای داده های باد واقعی و باد فیلتر شده صورت می گیرد . کار اصلی مقاله، استفاده از الگوریتم تکاملی PSO در آموزش شبکه عصبی و ارائه توجیهی برای استفاده از داده های فیلتر شده در پیش بینی باد می باشد .

کلیدواژه‌ها:

پیش بینی باد، شبکه های عصبی چندلایه، الگوریتم بهینه سازی PSO

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-PSC22-PSC22_284.html
کد COI مقاله: PSC22_284

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
پورموسوی کانی, سیدعلی؛ علی جهانبانی اردکانی؛ علی کاشفی کاویانی و غلامحسین ریاحی دهکردی، ۱۳۸۶، پیش بینی کوتاه مدت باد با استفاده از شبکه های عصبی چندلایه آموزش یافته با الگوریتم PSO جهت کاربردهای توربین بادی، بیست و دومین کنفرانس بین المللی برق، تهران، شرکت توانیر، پژوهشگاه نیرو، https://www.civilica.com/Paper-PSC22-PSC22_284.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (پورموسوی کانی, سیدعلی؛ علی جهانبانی اردکانی؛ علی کاشفی کاویانی و غلامحسین ریاحی دهکردی، ۱۳۸۶)
برای بار دوم به بعد: (پورموسوی کانی؛ جهانبانی اردکانی؛ کاشفی کاویانی و ریاحی دهکردی، ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • G.H. Riahy, M .Abedi, ?'Short term wind speed forecasting for ...
  • M.C. Alexiadis, P. S. Dokopoulo S, H. S. -term forecasting ...
  • U.Hoppmann, S. Keonig, T. Tielkes, G. Matschke, 00A short-term strong ...
  • G. N. Kariniotakis, P. Pinson, «Uncertainty of short-term wind power ...
  • C. W. Potter, M. N. Negnevitsky, *Very short-term wind forecasting ...
  • M. N. Negnevitsky, C. W. Potter, Innovative short-term wind generation ...
  • Ahmet Oztopal, ، Artificial neural network approach to spatial estimation ...
  • E. Cadenas, W. Rivera, "Wind speed forecasting in the south ...
  • : Rumelhart, D.E., Hinton, E., ...
  • Williams, J., 1986. Learning internal representation by error propagation. Parallel ...
  • : Clerc, M., Kennedy, J., 2002. The ...
  • : Konstantinos E. Parsopoulos and ...
  • Michael N. Vrahatis, "On the Computation of All Global Minimizers ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    نوع مرکز:
    تعداد مقالات: ۲۹۴۸۱
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.