CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

ARTIFICIAL NEURAL NETWORK MODELING FOR DYNAMIC PROPERTIES OF AGGREGATE-CLAY MIXTURES

اعتبار موردنیاز: ۱ | تعداد صفحات: ۹ | تعداد نمایش خلاصه: ۱۱۲۳ | نظرات: ۰
سرفصل ارائه مقاله: Soil and Foundation
سال انتشار: ۱۳۸۶
کد COI مقاله: SEE05_484
زبان مقاله: انگلیسی
حجم فایل: ۱۲۷.۷۷ کلیوبایت (فایل این مقاله در ۹ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۹ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله ARTIFICIAL NEURAL NETWORK MODELING FOR DYNAMIC PROPERTIES OF AGGREGATE-CLAY MIXTURES

   Ghateh - (M. Sc). International Institute of Earthquake Engineering and Seismology
   Shafiee - (Ph. D). International Institute of Earthquake Engineering and Seismology

چکیده مقاله:

Compacted aggregate-clay mixtures are successfully used as the core of embankment dams. These materials are usually broadly graded and encompass clay as the main body, and sand, gravel, cobble and even boulder which are floating in the clay matrix. The objective of this paper is to develop a mathematical model for predicting the cyclic deformation properties of aggregate-clay mixtures tested previously by Jafari and Shafiee (2004). A mathematical modeling, which has been shown to have some degree of success, is based on the data alone to determine the structure and parameters of the model. The technique is known as artificial neural networks (ANNs) and is well suited to model complex problems where the relationship between the model variables is unknown. A neural network is a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experiential knowledge and making it available for use.
Over the last few years, the use of artificial neural networks (ANNs) has increased in many areas of engineering. In particular, ANNs have been applied to many geotechnical engineering problems and have demonstrated some degree of success. A review of the literature reveals that ANNs has been used successfully in pile capacity prediction, modeling soil behavior, liquefaction, etc. In this paper two MLP models with different architectures are utilized for predicting damping ratio, shear modulus and pore pressure of aggregate-clay mixtures. The reliability of the models is tested using cross validation technique. The data used for training the networks is based on the laboratory tests for determining the dynamic properties of aggregate-clay mixtures. Finally the importance of each input parameter is determined using Garson’s approach.

کلیدواژه‌ها:

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-SEE05-SEE05_484.html
کد COI مقاله: SEE05_484

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Ghateh, & Shafiee, ۱۳۸۶, ARTIFICIAL NEURAL NETWORK MODELING FOR DYNAMIC PROPERTIES OF AGGREGATE-CLAY MIXTURES, پنجمین کنفرانس بین المللی زلزله شناسی و مهندسی زلزله, تهران, پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله, https://www.civilica.com/Paper-SEE05-SEE05_484.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (Ghateh, & Shafiee, ۱۳۸۶)
برای بار دوم به بعد: (Ghateh & Shafiee, ۱۳۸۶)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :

  • Holtz WG, Willard M. Triaxial shear characteristics of clayey gravel ...
  • Patwardhan AS, Rao J, Gaidhane RB. Interlocking effects and shearing ...
  • Vallejo LE, Zhou Y. The mechanical properties of simulated soil-rock ...
  • Jafari MK, Shafiee A. Mechanical behavior of compacted composite clays. ...
  • Haykin S. Neural Networks: A Comprehen sive Foundation. New Jersey: ...
  • Shahin MA, Jaksa MB, Maier HR. Artificial neural network applications ...
  • McCelland JL, Rumelhart DE. Explorations in parallel distributed processing. Boston: ...
  • Montano J, Palmer A. Numeric sensitivity analysis applied to feedforward ...
  • Garson GD. Interpreting neural network connection weights. Artificial Intelligence Expert ...
  • علم سنجی و رتبه بندی مقاله

    مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
    در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

    مدیریت اطلاعات پژوهشی

    اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

    مقالات پیشنهادی مرتبط

    مقالات مرتبط جدید

    شبکه تبلیغات علمی کشور

    به اشتراک گذاری این صفحه

    اطلاعات بیشتر درباره COI

    COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
    کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.