CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)
عنوان
مقاله

پیش¬بینی بارش با استفاده از شبکه¬های عصبی مصنوعی

اعتبار موردنیاز: ۱ | تعداد صفحات: ۸ | تعداد نمایش خلاصه: ۳۲۷۳ | نظرات: ۰
سرفصل ارائه مقاله: تغییر اقلیم، سیلاب و خشکسالی
سال انتشار: ۱۳۸۵
کد COI مقاله: WRM02_104
زبان مقاله: فارسی
حجم فایل: ۲۵۱.۴۲ کلیوبایت (فایل این مقاله در ۸ صفحه با فرمت PDF قابل دریافت می باشد)

راهنمای دانلود فایل کامل این مقاله

اگر در مجموعه سیویلیکا عضو نیستید، به راحتی می توانید از طریق فرم روبرو اصل این مقاله را خریداری نمایید.
با عضویت در سیویلیکا می توانید اصل مقالات را با حداقل ۳۳ درصد تخفیف (دو سوم قیمت خرید تک مقاله) دریافت نمایید. برای عضویت در سیویلیکا به صفحه ثبت نام مراجعه نمایید. در صورتی که دارای نام کاربری در مجموعه سیویلیکا هستید، ابتدا از قسمت بالای صفحه با نام کاربری خود وارد شده و سپس به این صفحه مراجعه نمایید.
لطفا قبل از اقدام به خرید اینترنتی این مقاله، ابتدا تعداد صفحات مقاله را در بالای این صفحه کنترل نمایید. در پایگاه سیویلیکا عموما مقالات زیر ۵ صفحه فولتکست محسوب نمی شوند و برای خرید اینترنتی عرضه نمی شوند.
برای راهنمایی کاملتر راهنمای سایت را مطالعه کنید.

خرید و دانلود PDF مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای ۸ صفحه است در اختیار داشته باشید.

قیمت این مقاله : ۳۰,۰۰۰ ریال

آدرس ایمیل خود را در زیر وارد نموده و کلید خرید با پرداخت اینترنتی را بزنید. آدرس ایمیل:

رفتن به مرحله بعد:

در صورت بروز هر گونه مشکل در روند خرید اینترنتی، بخش پشتیبانی کاربران آماده پاسخگویی به مشکلات و سوالات شما می باشد.

مشخصات نویسندگان مقاله پیش¬بینی بارش با استفاده از شبکه¬های عصبی مصنوعی

  نجمه خلیلی - دانشجوی کارشناسی ارشد آبیاری و زهکشی - دانشگاه فردوسی مشهد
  سعیدرضا خداشناس - استادیار گروه مهندسی آب - دانشگاه فردوسی مشهد
    کامران داوری (شناسه پژوهشگر - Researcher ID: ۴۳۵۸)
استادیارگروه مهندسی آب - دانشگاه فردوسی مشهد

چکیده مقاله:

پیش بینی بارش و برآورد نزولات جوی، به عنوان یکی از مهمترین پارامتر های اقلیمی در حوزه مد یریت منابع آبی، از اهمیت ویژه ای در تعیین س یاستهای آ ینده جهت به ینه ساز ی صرف هزینهها و استفاده از این منـابع برخوردار است . یکی از روش های مدل سازی رفتار بارش، شبکه های عصبی مـصنوعی ١ اسـت کـه از مؤلفـه هـای هـوش مصنوعی محسوب می شود . در این گونه مدل ها بدون در نظر گرفتن معادلات پیچیده غیر خطی، می توان دینامیک حاکم بر سیستم را استخراج نموده و از این طریق، خروجی های مدل را پیش بینی نمود . در این تحقیق، با استفاده از اطلاعات بارش میانگین ماهیانه ، به عنوان ورودی های شبکه عصبی پرسپترون پیشخور چند لایه( MLP )، در یک مدل جعبه سیاه، پیش بینی ماهیانه بـارش در ایـستگاه سـینوپتیک مـشهد ، انجـام
گرفته است . بدین منظور، از امکان ات و توابع موجود در محیط برنامه نویسی نرم افزار MATLAB ، بهره گرفته شد . پس از بررسی معیار های آماری برازش، از جمله ضرایب روابط رگرسیونی بین مقـادیر واقعـی و پـیش بینـی شـده بارش و همچنین میانگین مجذور مربعات خطا ، مشاهده شد که پیش بینی ماهیانه بارش، با دقت قابل قبـولی انجـام شده است . چنان میانگین مجذور مربعات خطا ، به ترتیـب0/92 و 1/00 میلـی متـر بـه دست آمده است .

کلیدواژه‌ها:

پیشبینی بارش، شبکههای عصبی مصنوعی، پرسپترون پیشخور چند لایه، جعبه سیاه .

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله، می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:
https://www.civilica.com/Paper-WRM02-WRM02_104.html
کد COI مقاله: WRM02_104

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
خلیلی, نجمه؛ سعیدرضا خداشناس و کامران داوری، ۱۳۸۵، پیش¬بینی بارش با استفاده از شبکه¬های عصبی مصنوعی، دومین کنفرانس مدیریت منابع آب، اصفهان، دانشگاه صنعتی اصفهان، انجمن علوم و مهندسی منابع آب ایران، https://www.civilica.com/Paper-WRM02-WRM02_104.html

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (خلیلی, نجمه؛ سعیدرضا خداشناس و کامران داوری، ۱۳۸۵)
برای بار دوم به بعد: (خلیلی؛ خداشناس و داوری، ۱۳۸۵)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز:
تعداد مقالات: ۳۳۰۷۶
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مدیریت اطلاعات پژوهشی

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

مقالات پیشنهادی مرتبط

مقالات مرتبط جدید

شبکه تبلیغات علمی کشور

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.
کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.