HYDRODYNAMIC FORCE CHARACTERISTICS AND COEFFICIENTS IN THE SPLASH ZONE REGION OF REGULAR WAVES

Mohammad Reza Daliri - Iranian Offshore Engineering and Construction Company (IOEC) No. 50, Sepand St., Gharani Ave., Tehran 15988, Iran
Nicholas Haritos - Department of Civil & Environmental Engineering The University of Melbourne, Grattan St., Parkville, Victoria 3052, Australia

A comprehensive "experimental" and "analytical" study of the "overall" and "local" hydrodynamic force characteristics of both "rigid" and "compliant" surface piercing segmented cylinders with "reguk" and "irregular" waves in "the splash zone" had been performed at the University of Melbourne for the last four years (Daliri, 1993-1996). Two segmented cylinders with different diameters were tested with a variety of compliancy conditions and natural frequencies. Conditions chosen produced variations in the test cylinder's natural frequency in the range \(0.7, 0.3, 0.5\) and \(1.0\) to \(12\) Hz which was considered to be reasonably representative. This paper concentrates on a portion of this study associated with the hydrodynamic force characteristics and the respective inline force coefficients of "rigid" tests under "regular" waves. "Regular" long-crested gravity waves, at frequency range between \(2.0\) to \(2\) Hz and wave steepness's \((\ll\text{ill})\) in the range \(0.085-0.005\) were synthesised. Reynolds numbers of up to \(20,000\) were used and the KC numbers were in the range \(0.5-30\) which encompasses inertia force dominant \((\text{KCd})\) to drag force dominant conditions \((\text{KC}>20)\). Observed response signals from two wave surface elevation probes \(q(t)\), an acoustic Doppler water particle velocimeter \(u(z,t)\), the along and across wave forces from instrumented segments \(f(z,t)\) in the wave run-up region, wave crest to trough region (the traditional splash zone), immediately below the splash zone and fully submerged zone plus along and across wave reactions of the cylinder's tip restraint force were simultaneously collected for subsequent analysis. In the rigid tests, the measured wave forces and the respective values of the in-line force coefficients \(\text{CD}\) and \(\text{CM}\) at different elevations have been inputted using the traditional form of the "Morison equation" which was modified to consider the intermittency effects at the splash - zone region. (A major focus was given on the "local" nature of the hydrodynamic force characteristics as realised in the splash zone and in the fully submerged zone immediately below this region.) In regular waves, it has been found that a correct application of the Morison equation (which is modified for the intermittency effects) in conjunction with the stream function wave theory (Fenton, 1998) can provide a reasonable description of the flow field within the crest to trough region.
and immediately below the splash zone. In addition, the results suggest that both CD and CM values in the splash zone region are "higher" and exhibit a mild "frequency dependence" in comparison with their corresponding counterparts for the fully submerged segments. For weakly nonlinear waves (\(Wl < 1.4\)) only wave fluctuation is found to be important and any mild nonlinearities do not significantly affect the test model force response and consequently the force coefficient values. However, for relatively nonlinear waves (\(0.1 < Wl < 1\)) both the free surface intermittency effect and the non-linearity in the wave kinematics severely affect the test model force response, producing ringing effects in conducive conditions.

کلمات کلیدی:

لینک ناپید مقاله در پایگاه سیویلیکا:
https://www.civilica.com/Paper-ICOPMAS03-ICOPMAS03_009.html