Models play a central role in understanding and predicting a reservoir key geological, gophysical, and engineering components. The aim of modeling is to provide one or more alternative 3D numerical models that aim to represent those geological, geophysical, reservoir engineering aspects of the subsurface that matter for the study goal at hand. All needed data to construct 3D geological model include; geological data geophysical data and reservoir data any 3D modeling is performed on a grid composed of cells that have a certain dimensions. A grid-cell size considerably larger than the dimension of the smallest-scale data is thus considered to generate what is called the high-resolution 3D geocellular model. The dimensions of geocellular model depend on the study goals and the available data the procedure of this modeling was done with using RMS software. In this software defines of geostatistical functions and relations that are using in modeling. Workflow in this study is as following below; inputting of locations and their trajectory wells input of well picks for sarvak formation, input of interpreted petrophysical logs input of main UGC maps editing and QC of input data making of main reservoir surfaces. Making of fault model making of structural model and 3D grid scale up of petrophysical logs inputting of acoustic impedance cubes into model for constraining of other parameters such as porosity for throughout of reservoir, data analysis and variography of each parameter, generating of stochastic model for each parameter. Finally determine of apt regions this field.

Keywords: geostatistical 3D modeling, reservoir, saravak formation, azadegan oil field

Link to the article: https://www.civilica.com/Paper-IOGPC17-IOGPC17_011.html
منشور نایب اصلت این گواهی می‌توانید وضعیت ثبت مقاله را از طریق لینک فوق به صورت آنلاین کنترل نمایید.