CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله مدلسازی بارش- رواناب با استفاده از مدل های مختلف شبکه عصبی و مقایسه آن با مدل درخت تصمیم (مطالعه موردی حوزه شهید نوری کاخک گناباد)

عنوان مقاله: مدلسازی بارش- رواناب با استفاده از مدل های مختلف شبکه عصبی و مقایسه آن با مدل درخت تصمیم (مطالعه موردی حوزه شهید نوری کاخک گناباد)
شناسه (COI) مقاله: DPCONF01_033
منتشر شده در اولین همایش ملی پدافند غیر عامل در بخشهای کشاورزی، منابع طبیعی و محیط زیست با رویکرد توسعه پایدار در سال ۱۳۹۴
مشخصات نویسندگان مقاله:

محمد مهدی زرعی - دانشجوی کارشناسی ارشد آبخیزداری دانشگاه فردوسی مشهد
محمد تقی دستورانی - دانشیار دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد
منصور مصداقی - استاد دانشکده منابع طبیعی و محیط زیست دانشگاه فردوسی مشهد

خلاصه مقاله:
براورد دقیق رواناب اهمیت بسیار زیادی از جنبه های گوناگون دارد .چه انکه میزان رواناب حاصل از بارش از یک طرف ممکن است منجر به سیل و مخاطره گردد و از طرف دیگر با عدم استفاده و بهره برداری مناسب از دسترس خارج گردد. بدین جهت برای شناخت عوامل موثر درمیزان رواناب و استاده بهینه از ان مدلسازی می شود. در میان روش ها و مدل های مختلف براورد رواناب ، مدل های شبکه عصبی مصنوعی از جمله روش هایی هستند که در دهه های اخیر با دقت مناسبی در مدل سازی به کار می روند. در این تحقیق نیز برای براورد میزان رواناب حاصل ازبارش ، انواعی از شبکه های عصبی مصنوع در محیط نرم افزار متلب ایجاد شد و بین نتایج حاصله ان ها مقایسه انجام گردید. شبکه های عصبی مصنوعی مورد استفاده در این پژوهش شامل شبکه های عصبی پس از انتشار پیشخور نرمال،پیشخور Cascade، پسخور Elman و مدل درخت تصمیم بودکه در نهایت نتایج نشان داد هر یک از مدل های فوق ، بسته ه تعداد مختلف پارامتر های ورودی ،نرون های لایه پنهان و نیز تعداد لایه های مخفی در زمان اجرای مدل،عملکرد متفاوتی را نشان می دهد. ولی در مجموع با قت مناسبی قادر به براورد رواناب هستند. امار و اطلاعات مورد استفاده مربوط به حوضه های زوجی کاخک گناباد ( اعم از زیر حوزه شاهد و نمونه) و شامل 162 داده حاصل از 18 پلات جای گذاری شده در موقعیت های مختلف ( جهتهای غربی،شمالی و شرقی) و 9 واقعه بارش-رواناب در بازه سال های 2015-2011است.

کلمات کلیدی:
مدلسازی، شبکه پس انتشار ، مدل درخت تصمیم ، شبکه های عصبی، پیشخور، پسخور

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-DPCONF01-DPCONF01_033.html