CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله Personalized ECG Signal Classification Using Block-Based Neural-Network and Particle Swarm Optimization

عنوان مقاله: Personalized ECG Signal Classification Using Block-Based Neural-Network and Particle Swarm Optimization
شناسه (COI) مقاله: ICBME20_078
منتشر شده در بیستمین کنفرانس مهندسی زیست پزشکی ایران در سال ۱۳۹۲
مشخصات نویسندگان مقاله:

Shirin Shadmand - Microelectronics Research Laboratory,Electrical Engineering Department, Urmia University, Urmia, Iran
Behbood Mashoufi - Microelectronics Research Laboratory,Electrical Engineering Department, Urmia University, Urmia, Iran

خلاصه مقاله:
The purpose of this paper is the classification of ECG heartbeats of a specific patient in five heartbeat types according to AAMI recommendation, using an implementable neuralnetwork such as Block-based Neural Network (BBNN). A BBNN is created from 2-D array of blocks that are connected to eachother and easily can be expanded. Each block is a neural network. Because of flexibility in structure and internal configurations of BBNN, we can implement that with areconfigurable digital hardware such as field programmable gate array (FPGA). The internal structure of each block depends onnumber of incoming and outgoing signals. Therefore, the overall construction of network is determined by the moving of signalthrough the network blocks. Network structure and the weights are optimized using particle swarm optimization (PSO) algorithm. Input of the BBNN is a vector that the elements of thisvector are the features that extracted from ECG signal. In this paper wavelet transform based features and temporal featuresthat extracted from ECG signals create the input vector of BBNN. ECG signals are time varying and also for different people are unique. The BBNN parameters have been optimized by PSO algorithm witch can overcome the possible changes of ECG signals. The performance evaluation using the MIT-BIH arrhythmia database shows a high classification accuracy of 97 %.

کلمات کلیدی:
Block-based Neural Network (BbNNs) , Particle Swarm Optimization (PSO) , Electrocardiogram signals (ECG) , Patient specific ECG signal classification.

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-ICBME20-ICBME20_078.html