CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله کاربرد تکنیکهای دادهکاوی در تشخیص بیماریهای شایع با توجه به علائم آنها

عنوان مقاله: کاربرد تکنیکهای دادهکاوی در تشخیص بیماریهای شایع با توجه به علائم آنها
شناسه (COI) مقاله: ICOAC01_185
منتشر شده در ششمین کنفرانس بین المللی اقتصاد، مدیریت و علوم مهندسی در سال ۱۳۹۴
مشخصات نویسندگان مقاله:

محمد نورسرش - دانشگاه آزاد اسلامی واحد همدان
سعیده اسکندری - موسسه آموزش عالی جهاد دانشگاهی واحد همدان
محسن مظاهری اسد - موسسه آموزش عالی مهرالبرز تهران

خلاصه مقاله:
امروزه با پیشرفت علم و تکنولوژی و ابزارهای فناوری، توانایی بازبینی و ذخیرهسازی دادههای مهم با حجمی وسیع فراهم گردیده که نیاز به تحقیقات علمی جهت جستجو در این دادهها و دریافت نتایجمفید لازم و ضروری گردیده است. یکی از زمینههایی که نیازمند استفاده از این ابزارها جهت تحلیل دادههای وسیع و مدلسازی پیشگویانه با روشهای محاسباتی جدید است، علم پزشکی میباشد. هدفاز این تحقیق بررسی دادههای پزشکی و ارائه یک روش صحیح دادهکاوی در زمینه دستهبندی دادهها برای پیشگویی بیماری افراد با استفاده از الگوریتمهای مناسب میباشد. بدین منظور، ابتدا طبقهبندیبیماریها و علائم مربوط به آنها با مشاوره پزشکان متخصص و اطلاعات پزشکی در دسترس پرداخته شده است. سپس مدلها و الگوریتمهای مناسب با مجموعه دادههای پزشکی شناخته شده است. جهت بررسی الگوریتمها از ابزار دادهکاویWEKA استفاده شده است که در نهایت 11 الگوریتم در سه حالت تست مختلف برای این تحقیق اجرا شد. نتایج آزمون این الگوریتمها نشان داد که در حالت تستUse training set طبقهبندی درست نمونهها از عملکرد بهتری برخوردار بوده است. همچنین الگوریتمهای User Classifier و Rep tree ،FT ،Decision Stump درصد کلاسبندی صحیح پایینی داشتهاند که برای دادههای این تحقیق مناسب نبوده است. سایر الگوریتمها عملکرد مناسبی روی دادههای آموزشی داشتهاند که از میان آنها الگوریتم Random tree بهترین راندمان را ) 111 درصد( داشته است. همچنین الگوریتم 48J یک الگوریتم درخت تصمیم یادگیرنده 4.5 C میباشد که با 57 درصد طبقهبندی صحیح هم میتواند برای دادههای این تحقیق مناسب باشد

کلمات کلیدی:
الگوریتم دادهکاوی، دادهکاوی پزشکی، دادهکاوی بیماران، تشخیص بیماری، درخت تصمیم

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-ICOAC01-ICOAC01_185.html