CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله پیش بینی نرخ نفوذ ماشین حفر تونل؛ مقایسه نتایج روش های رگرسیون خطی چند متغیره و سیستم استنتاج تطبیقی فازی عصبی

عنوان مقاله: پیش بینی نرخ نفوذ ماشین حفر تونل؛ مقایسه نتایج روش های رگرسیون خطی چند متغیره و سیستم استنتاج تطبیقی فازی عصبی
شناسه (COI) مقاله: NCCE06_0980
منتشر شده در ششمین کنگره ملی مهندسی عمران در سال ۱۳۹۰
مشخصات نویسندگان مقاله:

عبدالرضا یزدانی چمزینی - دانشجوی کارشناسی ارشد مهندسی معدن، دانشگاه تربیت مدرس، تهران
سیدمحمد هاشمی ریزی - دانشجوی کارشناسی ارشد مهندسی معدن، دانشگاه تربیت مدرس، تهران
محمدحسین بصیری - استادیار و عضو هیئت علمی گروه معدن، دانشگاه تربت مدرس، تهران

خلاصه مقاله:
ماشین های حفار تمام مقطع از مهمترین ماشین های حفاری در تونل ها و فضاهای زیرزمینی به شمار میروند. به دلیل قیمت بالای ماشین ارزیابی عملکرد در این روش حفاری از اهمیت ویژه ای برخوردار است. بدین منظور مهمترین شاخص ارزیابی عملکرد ماشین حفر تونل نرخ نفوذ این دستگاه میباشد. روش های متنوعی برای پیش بینی نرخ نفوذ وجود دارد که می توان به سه دسته روش های تحلیلی، آماری و هوش مصنوعی تقسیم بندی نمود. روش های رگرسیون خطی چند متغیره ( از زیر مجموعه های روش آماری) و سیستم استنتاج تطبیقی فازی عصبی (از زیرمجموعه های روش های هوش مصنوعی) دو رویکرد با کارایی بالا در مدل سازی و تشخیص الگو در داده ها می باشند. در این تحقیق با به کار گیری روش رگرسیون خطی و سیستم استنتاج تطبیقی فازی عصبی به پیش بینی نرخ نفوذ ماشین حفر تونل برای تونل انتقال آب کوئینز در نیویورک پرداخته است. نتایج نشان از آن دارد که مدل استخراج شده از متدولوژی سیستم استنتاج تطبیقی فازی عصبی دارای ضریب همبستگی 0/98و روش رگرسیون خطی چند متغیره دارای ضریب همبستگی 0/62 می باشد.

کلمات کلیدی:
پیش بینی نرخ نفوذ، ماشین حفر تونل، رگرسیون خطی چند متغیره، سیستم استنتاج تطبیقی فازی عصبی، تونل کوئینز

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-NCCE06-NCCE06_0980.html