CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله پیش بینی کوتاه مدت بار الکتریکی شبکه سرتاسری ایران با استفاده از شبکه های عصبی و منطق فازی

عنوان مقاله: پیش بینی کوتاه مدت بار الکتریکی شبکه سرتاسری ایران با استفاده از شبکه های عصبی و منطق فازی
شناسه (COI) مقاله: PSC20_099
منتشر شده در بیستمین کنفرانس بین المللی برق در سال ۱۳۸۴
مشخصات نویسندگان مقاله:

هادی رزمی - دانشجوی کارشناسی ارشد کنترل دانشکده مهندسی برق و کامپیوتر دانشگاه تب
محمدتقی وکیل باغمیشه - استادیار گروه کنترل دانشکده مهندسی برق و کامپیوتر دانشگاه تبریز ایرا

خلاصه مقاله:
پـیش بینی کوتــاه مـدت مصـرف بــار الـکتریــکی نقـش اساسی در بهره برداری بهینه از سیستمهای قدرت دارد . در این مقاله با اس تفاده از شبـکه عصبی پرسپترون چنـد لایـه ( MLP ) [1] و منطق فازی [2] مـدلی جهت پــیش بینـی کوتــاه مـدت بـار الـکتریـکی مطرح شده است . این مدل بار الکتریکی را به دو بخش تقسـیم مـی کنـد . منحنـی بـار نرمـالیزه و مینـیمم و ماکزیمم بار . منحنی نرمـالیزه بـار توسـط یـک شـبکه عصـبی متشکل از 16 مدول MLP پیش بینی می شود . 16 مدول مـورد استفاده برای پیش بینی بار در روزهای کاری هفته ( یکشنبه تـا چهارشــنبه ) ، روزهــای تعطیــل، روزهــای قبــل از تعطیلــی، و روزهای بعد از تعطیلی در هر یک از فصـول بهـار، تابسـتان، پائیز، و زمستان به کار می روند . مقادیر مینیمم و مـ اکزیمم بـار در هر روز توسط منطق فازی پیش بینی خواهـد شـد . در ایـن مــدل، شــرایط آب و هــوایی، تغییــرات ماهیانــه، نــوع روز و اطلاعات تعطیلات خاص در نظر گرفته شده اند . مدل مـذکور توسط اطلاعات بار اخذ شده از مرکز دیسپاچینگ ایران مـورد آزمایش واقع گردیده است و متوسط قدرمطلق خطای بدستآمده 1/6 درصد می باشد .

کلمات کلیدی:
پیش بینی کوتاه مدت بار، شبکه های عصبی، پرسپترون چند لایه، منطق فازی

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-PSC20-PSC20_099.html