CIVILICA We Respect the Science
(ناشر تخصصی کنفرانسهای کشور / شماره مجوز انتشارات از وزارت فرهنگ و ارشاد اسلامی: ۸۹۷۱)

گواهی نمایه سازی مقاله An Advance Modeling and Control Strategy for a Real Freeway

عنوان مقاله: An Advance Modeling and Control Strategy for a Real Freeway
شناسه (COI) مقاله: TTC12_117
منتشر شده در دوازدهمین کنفرانس مهندسی حمل و نقل و ترافیک ایران در سال ۱۳۹۱
مشخصات نویسندگان مقاله:

Azita Dabiri - School of Electrical & Control Engineering, Shiraz University, Shiraz, Iran
Ali Akbar Safavi - School of Electrical & Control Engineering, Shiraz University, Shiraz, Iran
Ali Safavi - School of Electrical & Control Engineering, Shiraz University, Shiraz, Iran
Gabriel Gomes - California PATH, 1357 S. 46th Street, Bldg. 452, Richmond, CA 94804- 4648, USA

خلاصه مقاله:
In this paper an advance modeling and control strategy for a real freeway a based on neural networks and model predictive control is proposed. Because of the nonlinearity of freeway traffic flow, neural network is a promising method for modeling of this system. However, as the freeway length is increased, complexity and dimension of the neural network models will increase. It is shown that by using principal component analysis, the network dimension can be decreased while the accuracy of the models will be reasonably preserved. Then, the simplified neural network can be used within an MPC framework for ramp metering control within a wider area. The approach is then evaluated based on some collected real data from a freeway in USA. The simulation results demonstrate that the proposed approach can alleviate traffic congestion and improve efficiency of the freeway.

کلمات کلیدی:
Traffic control, MPC, PCA, Neural Network, Modeling

صفحه اختصاصی مقاله و دریافت فایل کامل: https://www.civilica.com/Paper-TTC12-TTC12_117.html