Development of heavy metal passivators in residue fluid catalytic cracking process

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 47

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JRCC-4-13_003

تاریخ نمایه سازی: 6 اسفند 1402

چکیده مقاله:

The advancement of residual fluid catalytic cracking (RFCC) is significantly influenced by the development of heavy metals passivation technology. Resids often include larger concentrations of heavy metals (Ni, V, and Fe) than gas oils, primarily in the form of porphyrin complexes and salts of organic acids. Under cracking conditions, metals, especially Ni and V in residues and gas oil deposit on the cracking catalyst and induce adverse dehydrogenation reactions. The catalyst's zeolite component is destroyed by these metals. While reducing the yield of gasoline, active metals increase the yields of coke and hydrogen. Because most cracking FCC units can only tolerate limited amounts of coke and hydrogen, the level of heavy metals on the catalyst needs to be kept under control in order to achieve maximum productivity and profit. Metal passivation enhances catalytic activity and/or selectivity to more desired products by minimizing the detrimental effects of contaminating metals. In this study, we will review heavy metals deactivation mechanism in RFCC process and the potential technological solutions to the catalyst deactivation concern.The advancement of residual fluid catalytic cracking (RFCC) is significantly influenced by the development of heavy metals passivation technology. Resids often include larger concentrations of heavy metals (Ni, V, and Fe) than gas oils, primarily in the form of porphyrin complexes and salts of organic acids. Under cracking conditions, metals, especially Ni and V in residues and gas oil deposit on the cracking catalyst and induce adverse dehydrogenation reactions. The catalyst's zeolite component is destroyed by these metals. While reducing the yield of gasoline, active metals increase the yields of coke and hydrogen. Because most cracking FCC units can only tolerate limited amounts of coke and hydrogen, the level of heavy metals on the catalyst needs to be kept under control in order to achieve maximum productivity and profit. Metal passivation enhances catalytic activity and/or selectivity to more desired products by minimizing the detrimental effects of contaminating metals. In this study, we will review heavy metals deactivation mechanism in RFCC process and the potential technological solutions to the catalyst deactivation concern.

نویسندگان

Peyman Salahshour

School of Science and Technology, The University of Georgia, Tbilisi, Georgia

Mansoureh Yavari

Amirkabir university of tehran

Fatih Güleç

Advanced Materials Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG۷ ۲RD, UK

Huseyin Karaca

Department of Chemical Engineering, Inonu University, ۴۴۲۸۰ Campus, Malatya, Turkey

Sara Tarighi

Iran Polymer and Petrochemical Institute Tehran, Iran

Sajjad Habibzadeh

Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • R. Sadeghbeigi, Fluid Catalytic Cracking Handbook: An Expert Guide to ...
  • R.H. Harding, A.W. Peters, J.R.D. Nee, New developments in FCC ...
  • C. Perego, R. Millini, Porous materials in catalysis: challenges for ...
  • A. Akah, M. Al-Ghrami, Maximizing propylene production via FCC technology, ...
  • B. Siddiqui, A.M. Aitani, M.R. Saeed, S. Al-Khattaf, Enhancing the ...
  • J.S. Buchanan, The chemistry of olefins production by ZSM-5 addition ...
  • A.W. Chester, Chapter 6 CO combustion promoters: past and present, ...
  • F. Güleç, W. Meredith, C.E. Snape, Progress in the CO2 ...
  • M. Falco, E. Morgado, N. Amadeo, U. Sedran, Accessibility in ...
  • W. Chen, D. Han, X. Sun, C. Li, Studies on ...
  • F.V. Pinto, A.S. Escobar, B.G. de Oliveira, Y.L. Lam, H.S. ...
  • G.M. Woltermann, J.S. Magee, S.D. Griffith, Chapter 4 Commercial Preparation ...
  • P.B. Venuto, T. Habib, Catalyst-Feedstock-Engineering Interactions in Fluid Catalytic Cracking, ...
  • H. Pavol, FCC catalyst-Key element in refinery technology, 2011. ...
  • J.R.D. Nee, R.H. Harding, G. Yaluris, W.C. Cheng, X. Zhao, ...
  • J.S.J. Hargreaves, A.L. Munnoch, A survey of the influence of ...
  • O.A. Topete, Worldwide FCC Equilibrium Catalyst Trends, (2011). ...
  • A.W. Chester, Studies on the metal poisoning and metal resistance ...
  • A. Doyle, A. Saavedra, M.L.B. Tristão, R.Q. Aucelio, Determination of ...
  • G. Jiménez-García, H.d. Lasa, R. Quintana-Solórzano, R. Maya-Yescas, Catalyst activity ...
  • U.J. Etim, B. Xu, R. Ullah, Z. Yan, Effect of ...
  • P. Bai, U.J. Etim, Z. Yan, S. Mintova, Z. Zhang, ...
  • H.S. Cerqueira, G. Caeiro, L. Costa, F. Ramôa Ribeiro, Deactivation ...
  • D.J. Rawlence, K. Gosling, Irreversible deactivation of fcc catalysts, Catalysis ...
  • R.F. Wormsbecher, W.-C. Cheng, G. Kim, R.H. Harding, Vanadium Mobility ...
  • W. Letzsch, Fluid catalytic cracking (FCC), in: D.S.J.S. Jones, P.R. ...
  • J.G. Reynolds, NICKEL IN PETROLEUM REFINING, Petroleum Science and Technology ...
  • O. Bayraktar, Effect of pretreatment on the performance of metal ...
  • F.S. Zrinscak Sr, G.G. Karsner, Catalytic cracking of metal-contaminated oils, ...
  • O. Bayraktar, E.L. Kugler, Visualization of the Equilibrium FCC Catalyst ...
  • D.R. Rainer, E. Rautiainen, B. Nelissen, P. Imhof, C. Vadovic, ...
  • G. Yaluris, W.C. Cheng, M. Peters, L.T. McDowell, L. Hunt, ...
  • Y. Mathieu, A. Corma, M. Echard, M. Bories, Single and ...
  • Z. Liu, Z. Zhang, P. Liu, J. Zhai, C. Yang, ...
  • Z. Yuxia, D. Quansheng, L. Wei, T. Liwen, L. Jun, ...
  • F. Güleç, W. Meredith, C.-G. Sun, C.E. Snape, Demonstrating the ...
  • F. Güleç, W. Meredith, C.-G. Sun, C.E. Snape, A novel ...
  • F. Güleç, W. Meredith, C.-G. Sun, C.E. Snape, Selective low ...
  • R.H. Nielsen, P.K. Doolin, Chapter 10 Metals Passivation, in: J.S. ...
  • M.W. Anderson, M.L. Occelli, S.L. Suib, Luminescence probes of vanadium-contaminated ...
  • W.P. Hettinger Jr, H.W. Beck, E.B. Cornelius, P.K. Doolin, R.A. ...
  • D.F. Tatterson, R.L. Mieville, Nickel/vanadium interactions on cracking catalyst, Industrial ...
  • R.F. Wormsbecher, A.W. Peters, J.M. Maselli, Vanadium poisoning of cracking ...
  • G.L. Woolery, A.A. Chin, G.W. Kirker, A. Huss Jr, X-ray ...
  • L.A. Pine, P.J. Maher, W.A. Wachter, Prediction of cracking catalyst ...
  • R.D.M. Pimenta, M.M. Pereira, U.d. Nascimento, J. Gorne, E. Bernadete, ...
  • D.V. Cristiano-Torres, Y. Osorio-Pérez, L.A. Palomeque-Forero, L.E. Sandoval-Díaz, C.A. Trujillo, ...
  • L.-E. Sandoval-Díaz, J.-M. Martínez-Gil, C.A. Trujillo, The combined effect of ...
  • P.K. Doolin, J.F. Hoffman, M.M. Mitchell, Role of metal contaminants ...
  • V. Cadet, F. Raatz, J. Lynch, C. Marcilly, Nickel contamination ...
  • C.H. Bartholomew, R.B. Pannell, J.L. Butler, Support and crystallite size ...
  • C.H. Bartholomew, R.J. Farrauto, Chemistry of nickel-alumina catalysts, Journal of ...
  • J.L. Palmer, E.B. Cornelius, Separating equilibrium cracking catalyst into activity ...
  • S.-Q. Yu, H.-P. Tian, Y.-X. Zhu, Z.-Y. Dai, J. Long, ...
  • Y. Yung, K. Bruno, Low rare earth catalysts for FCC ...
  • R. Wormsbecher, W. Cheng, D. Wallenstein, Role of the rare ...
  • M.K. Maholland, Improving FCC catalyst performance, Petroleum technology quarterly 11(2) ...
  • A. Akah, Application of rare earths in fluid catalytic cracking: ...
  • B.H. Davis, M.L. Occelli, Advances in Fischer-Tropsch synthesis, catalysts, and ...
  • J.S. Magee, M.M. Mitchell, Fluid Catalytic Cracking: Science and Technology, ...
  • H.J. Jeon, S.K. Park, S.I. Woo, Evaluation of vanadium traps ...
  • D. Wallenstein, K. Schäfer, R.H. Harding, Impact of rare earth ...
  • J.G. Nery, Y.P. Mascarenhas, T.J. Bonagamba, N.C. Mello, E.F. Souza-Aguiar, ...
  • C.R. Moreira, N. Homs, J.L.G. Fierro, M.M. Pereira, P. Ramírez ...
  • C.R. Moreira, M.H. Herbst, P.R. de la Piscina, J.-L.G. Fierro, ...
  • C.R. Moreira, M.M. Pereira, X. Alcobé, N. Homs, J. Llorca, ...
  • T.J. Dougan, U. Alkemade, B. Lakhanpal, L.T. Boock, New vanadium ...
  • W. Huai-Ping, W. Fang-Zhu, W. Wen-Ru, Effect of vanadium poisoning ...
  • B.a. Fe´ron, P. Gallezot, M. Bourgogne, Hydrothermal aging of cracking ...
  • T. Myrstad, Effect of vanadium on octane numbers in FCC-naphtha, ...
  • P.H. Kasai, Zeolite Chemistry and Catakysis, ACS Monograph 171 350 ...
  • X. Du, H. Zhang, G. Cao, L. Wang, C. Zhang, ...
  • U.J. Etim, P. Bai, R. Ullah, F. Subhan, Z. Yan, ...
  • X. Pang, S. Sun, W. Ding, Study on nickel-tolerant matrix ...
  • Y. Shi, High metal tolerance matrix for FCC catalyst, Pet. ...
  • C. Yuan, Z. Pan, Z. Tan, H. Zhang, Synthesis of ...
  • C. Yuan, L. Zhou, Q. Chen, C. Su, Z. Li, ...
  • W.S. Letzsch, L.L. Upson, A.G. Ashton, Passivate nickel in FCC ...
  • S. Oruji, R. Khoshbin, R. Karimzadeh, Combination of precipitation and ...
  • M.A.A. Majed, C.T. Tye, Catalytic cracking of used vegetable oil ...
  • O. Alfernando, S. Fitri, Used cooking oil catalytic cracking using ...
  • G.L. Baugis, H.F. Brito, W. de Oliveira, F. Rabello de ...
  • P. Liu, Y. Cui, G. Gong, X. Du, J. Wang, ...
  • نمایش کامل مراجع