Armor Layer Uniformity and Thickness in Stationary Conditions with Steady Uniform Flow

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-8-6_001

تاریخ نمایه سازی: 1 اردیبهشت 1403

چکیده مقاله:

The continuous movement of riverbed particles due to turbulent flow determines the stability of non-cohesive riverbeds and banks during riverbed and bank erosion and sedimentation. This study emulated the stable channel design by deriving the low maintenance cost of the channel through bed protection by an armor layer. The study investigated the effects of shear stress and grain size uniformity to determine the minimum non-cohesive armor layer thickness for the stability of riverbeds under steady uniform flow conditions. Experiments were conducted with four different discharges, five armor material gradations, and five bed-slope variations in a full-scale flume. We observed and recorded the behaviors of the five gradations of armor materials for given discharges and bed slopes. Eighty data points were recorded and analyzed. The hydraulic analysis of the flow along with the soil mechanics analysis of the armor materials was done. The soil mechanic analysis was particularly focused on the uniformity coefficient of the armor layer, Cu, to derive the armor layer equation. However, for the manageability of the study, we set the limit of the Cu between ۳.۰ and ۶.۰. From the viewpoint of non-erodibility, a wider Cu value indicated a thinner armor layer. Variables that govern the armor layer thickness and the layer thickness itself were derived and proposed. The variables, namely Cu, shear stress (t۰ and tc), and mean diameter of the bed load and armor materials (Db۵۰ and Da۵۰). Our results show that these variables governed the thickness of the armor layer, and this is expected to contribute to the design of stable natural channels, which can minimize the cost of irrigation canal maintenance and development. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۰۶-۰۱ Full Text: PDF

کلیدواژه ها:

Flow Shear Stress ، Armor Layer Thickness and Uniformity ، Bed Material Grain Size ، Flume ، Experiment.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Griffiths, G. A. (1981). Stable-channel design in gravel-bed Rivers. Journal ...
  • Everard, M., & Powell, A. (2002). Rivers as living systems. ...
  • Iberall, A.S. (1987). On Rivers. Self-Organizing Systems. Life Science Monographs. ...
  • Ettema, R. (1984). Sampling armor-layer sediments. Journal of Hydraulic Engineering, ...
  • Lamberti, A., & Paris, E. (1992). Analysis of armouring process ...
  • Shen, H. W., & Lu, J. Y. (1983). Development and ...
  • Vázquez-Tarrío, D., Piégay, H., & Menéndez-Duarte, R. (2020). Textural signatures ...
  • Abrahams, A. D., Li, G., Krishnan, C., & Atkinson, J. ...
  • Yang, C. T., & Molinas, A. (1982). Sediment transport and ...
  • Zhang, S., Zhu, Z., Peng, J., He, L., & Chen, ...
  • Bettess, R., & Frangipane, A. (2003). A one-layer model to ...
  • Tait, S. J., Willetts, B. B., & Maizels, J. K. ...
  • Proffitt, G. T. (1980). Selective transport and armouring of non-uniform ...
  • Parker, G., Klingeman, P. C., & McLean, D. G. (1982). ...
  • Wilcock, P. R., & Crowe, J. C. (2003). Surface-based transport ...
  • Curran, J. C., & Wilcock, P. R. (2005). Effect of ...
  • Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of ...
  • Bakke, P. D., Basdekas, P. O., Dawdy, D. R., & ...
  • Wilcock, P. R. (2001). Toward a practical method for estimating ...
  • Tan, L., & Curran, J. C. (2012). Comparison of Turbulent ...
  • Mrokowska, M. M., & Rowinski, P. M. (2019). Impact of ...
  • Berni, C., Perret, E., & Camenen, B. (2018). Characteristic time ...
  • Elgueta-Astaburuaga, M. A., & Hassan, M. A. (2019). Sediment storage, ...
  • Ancey, C. (2020). Bedload transport: a walk between randomness and ...
  • Limerinos, J. T. (1969). Determination of the Manning coefficient from ...
  • Shields, A. (1936). Application of similarity principles and turbulence research ...
  • Gomez, B. (2022). The efficiency of the river machine. Geomorphology, ...
  • Wang, Q., Pan, Y., Yang, K., & Nie, R. (2020). ...
  • Wang, Q., Li, L., Li, X., Wang, Y., & Nie, ...
  • Anand, A., Beg, M., & Kumar, N. (2021). Experimental studies ...
  • van der Meer, J. W. (1986). Deterministic and Probabilistic Design ...
  • Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2018). ...
  • Escarameia, M. (1999). River and channel revetments - a design ...
  • Eaton, B., & Millar, R. (2017). Predicting gravel bed river ...
  • Ackers, P., & White, W. R. (1973). Sediment Transport: New ...
  • Płaczkowska, E., Krzemień, K., Gorczyca, E., Bojarczuk, A., & Żelazny, ...
  • نمایش کامل مراجع