A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 24

فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-8-10_020

تاریخ نمایه سازی: 1 اردیبهشت 1403

چکیده مقاله:

In recent years, global society has been subjected to great change due to unpredictable events such as pandemics, migrant flow, urban homeless, wars, and natural disasters. There has been an increased demand for fast and easily constructed buildings characterized by limited space and used for a limited time, modular and flexible self-assembly homes that are reusable without compromising comfort and environmental sustainability. A highly sustainable timber-cork modular system for lightweight temporary housing (LTH) is proposed in this paper. The structure of the proposed LTH was designed as a succession of modular timber portal frames composed of spruce boards hinged together. The concept of the prototype was a full modular shelter. It was possible to interchange every piece of the building, the structural elements, and the walls with each other. Due to the modularity of the elements of which the shelter was composed, this system could offer different solutions to the events above. The proposed LTH was analyzed in terms of its structural, thermal, and environmental performance. The structural system is very reminiscent of the platform frame, characterized by a light load-bearing frame consisting of solid timber uprights and crosspieces connected to the internal frame by means of a mechanical connection. The structural FEM analysis highlighted the structure’s capacity to withstand wind with a velocity of ۷۲ m·s-۱, corresponding to the F۳ of the enhanced Fujita Scale (EF Scale) of tornado damage intensity. The thermal analysis highlighted a yearly energy use of ۴۳۰.۴۹ kWh to maintain a set-point temperature indoors of ۲۰-۲۶°C compared with a yearly energy use of ۶۲۵.۹۳ kWh for a common container house (CH) with the same dimensions under the same environmental conditions. Finally, a Life Cycle Analysis comparison between the proposed LTH and the CH was carried out by means of the One Click LCA software. Two different scenarios of service life were considered: one of ۱۰ years and the other of ۵ years. The results highlighted the higher sustainability of the proposed LTH than that of the CH for the required service life (Req SL) period. In particular, the calculated greenhouse gas emissions of the LTH (۳.۵۲۱۰۳ kgCO۲ eq) were less than ۱/۲ of the gas emissions of the CH (۸.۵۳۱۰۳) for a Req SL of ۱۰ years and about ۱/۳ for a Req SL of ۵ years. Furthermore, the LTH showed a value of biogenic carbon storage (۷.۷۶E۲ kgCO۲) about ۶ times bigger than the temporary house container (۱.۳۱E۲ kgCO۲). Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۱۰-۰۲۰ Full Text: PDF

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Klochko, A. R. (2022). Visions of the Future of Post-Industrial ...
  • Arslan, H. (2007). Re-design, re-use and recycle of temporary houses. ...
  • Moreno-Sierra, A., Pieschacón, M., & Khan, A. (2020). The use ...
  • Radogna, D. (2018). Emergency and tourism in Abruzzo. A temporary ...
  • UN, United Nations. (2006). Exploring key changes and developments in ...
  • Haapio, A., & Viitaniemi, P. (2008). A critical review of ...
  • Gomez-Echeverri, L. (2018). Climate and development: Enhancing impact through stronger ...
  • Bashawri, A., Garrity, S., & Moodley, K. (2014). An Overview ...
  • Zafra, R. G., Mayo, J. R. M., Villareal, P. J. ...
  • Li, S., & Deng, K. (2019). Lightweight reconfigurable structure system ...
  • Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & ...
  • Vilches, A., Garcia-Martinez, A., & Sanchez-Montañes, B. (2017). Life cycle ...
  • Alshawawreh, L., Pomponi, F., D’Amico, B., Snaddon, S., & Guthrie, ...
  • Salvalai, G., Sesana, M. M., Brutti, D., & Imperadori, M. ...
  • Hosseini, S. M. A., Farahzadi, L., & Pons, O. (2021). ...
  • Yang, S., Wi, S., Cho, H. M., Park, J. H., ...
  • Bovo, M., Giani, N., Barbaresi, A., Mazzocchetti, L., Barbaresi, L., ...
  • Obyn, S., Van Moeseke, G., & Virgo, V. (2015). Thermal ...
  • Barreca, F., & Fichera, C. R. (2015). Thermal insulating characteristics ...
  • Skuratov, N. (2010). New lightweight solid wood panels for green ...
  • Naji, S., Çelik, O. C., Johnson Alengaram, U., Jumaat, M. ...
  • Barreca, F. (2018). Utilization of cork residues for high performance ...
  • Barreca, F., & Praticò, P. (2019). Environmental indoor thermal control ...
  • Barreca, F., & Tirella, V. (2017). A self-built shelter in ...
  • Ni, C., He, M., & Chen, S. (2012). Evaluation of ...
  • Evola, G., & Marletta, L. (2014). The effectiveness of PCM ...
  • Guralp, A. (2000). Screw pile foundations. WIT Transactions on the ...
  • Croce, P., Landi, F., Formichi, P., Beconcini, M.L., Puccini, B., ...
  • Ministry of Infrastructure and Transport. (2018). Update of the 'Technical ...
  • Porteous, J., & Kermani, A. (2007). Structural Timber Design to ...
  • EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake ...
  • Casagrande, D., Sinito, E., Izzi, M., Pasetto, G., & Polastri, ...
  • van de Lindt, J. W., Pei, S., Pryor, S. E., ...
  • NTC 2018. (2018). New seismic standards for structural calculation. Available ...
  • EN 1991-1-1. (2002). Eurocode 1: Actions on structures-Part1-1: General actions-Densities, ...
  • EN 1995-1-1. (2004). Eurocode 5: Design of timber structures. European ...
  • He, X., Chen, Y., Ke, K., Shao, T., & Yam, ...
  • Doswell, C. A., Brooks, H. E., & Dotzek, N. (2009). ...
  • Barreca, F., & Praticò, P. (2018). Post-occupancy evaluation of buildings ...
  • Bruno, R., Arcuri, N., & Carpino, C. (2015). The passive ...
  • Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, ...
  • Gómez, J., Tascón, A., & Ayuga, F. (2018). Systematic layout ...
  • Bruno, R., Bevilacqua, P., Rollo, A., Barreca, F., & Arcuri, ...
  • Barbaresi, A., Bovo, M., Santolini, E., Barbaresi, L., Torreggiani, D., ...
  • UNI/TS 11300-1:2014. (2014). Energy performance of buildings-Part1: Evaluation of energy ...
  • Arcuri, N., Bruno, R., & Bevilacqua, P. (2015). Influence of ...
  • Asdrubali, F., Baldassarri, C., & Fthenakis, V. (2013). Life cycle ...
  • Kubba, S. (2012). Handbook of Green Building Design and Construction. ...
  • Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., ...
  • Ameen, R. F. M., Mourshed, M., & Li, H. (2015). ...
  • Allotey, I. A. (1987). Low-cost test rig for structural engineering ...
  • Elamin, M. D. E. (2020). Life cycle assessment as a ...
  • BS EN 15978:2011. (2012). Sustainability of construction works - Assessment ...
  • ISO 14044:2006. (2022). Environmental management-Life cycle assessment-Requirements and guidelines. International ...
  • EN 15804. (2022). European Standard for the generation of EPD ...
  • BS EN 15804:2012+A1:2013. (2014). Sustainability of construction works. Environmental product ...
  • Koke, J., Schippmann, A., Shen, J., Zhang, X., Kaufmann, P., ...
  • نمایش کامل مراجع