Determination of Mass Properties in Floor Slabs from the Dynamic Response Using Artificial Neural Networks

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 40

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CEJ-8-8_001

تاریخ نمایه سازی: 1 اردیبهشت 1403

چکیده مقاله:

Most of the research on accidental eccentricity is directed at both the evaluation of accidental eccentricity design code recommendations and the study of building torsional response. In contrast, this paper addresses how the mass properties of each of the levels of a building could be determined from the dynamic response of a building. Using the dynamic response of buildings, this paper presents the application of multilayer feed forward artificial neural networks (ANNs) to determine the magnitude, the radial distance, and the polar moment of inertia of the mass for each level of reinforced concrete (RC) buildings. Analytical models were developed for three regular buildings. Live-load magnitude and mass position are considered as random variables. Seven load cases were generated for the ۱, ۲ and ۴-story models using two excitations. As for the input parameters of the ANNs, three different choices of input data to the network were used. The developed ANN models are able to predict with adequate accuracy the radial position, magnitude, and polar moment of inertia of masses of each level. The implementation of this method based on ANNs would allow the monitoring, either permanently or temporarily, of changes in mass properties at each building floor slab. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۰۸-۰۱ Full Text: PDF

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Meli, R., & Rosenblueth, E. (1986). The 1985 Earthquake causes ...
  • Georgoussis, G. K., & Mamou, A. (2019). Mass eccentricity effects ...
  • De-la-Colina, J., & Valdés-González, J. (2021). New Proposal to Incorporate ...
  • ASCE/SEI 7-16 (2017). Minimum design loads and associated criteria for ...
  • NTC-DS. (2021). Complementary Technical Standards for Earthquake Design: Construction Regulations ...
  • EN 1998-1. (2004). Eurocode 8: Design of structures for earthquake ...
  • Basu, D., & Giri, S. (2015). Accidental eccentricity in multistory ...
  • Zarza-González, J., De-La-colina, J., & Valdés-González, J. (2021). Evaluation of ...
  • Bourahla, N. (2015). Seismic accidental eccentricity: origins, effects and evaluation. ...
  • Zakaria, A., Shiva Rama Krishna, M., Vamsi Krishna, T. G. ...
  • Bourahla, N., Boukhamacha, T., & Tafraout, S. (2006). Detection of ...
  • De-la-Llera, J. C., & Chopra, A. K. (1994). Accidental torsion ...
  • De-la-Llera, J. C., & Chopra, A. K. (1994). Accidental torsion ...
  • Wong, C. M., & Tso, W. K. (1994). Inelastic seismic ...
  • Shakib, H., & Tohidi, R. Z. (2002). Evaluation of accidental ...
  • Stathopoulos, K. G., & Anagnostopoulos, S. A. (2005). Inelastic torsion ...
  • De-la-Colina, J., González-Pérez, C. A., & Valdés-González, J. (2016). Accidental ...
  • Badaoui, M., Bourahla, N., & Bensaibi, M. (2019). Estimation of ...
  • Andam, K. A. (1986). Floor live loads for office buildings. ...
  • Ruiz, S. E., & Sampayo-Trujillo, A. (1997). Design Live Loads ...
  • Ruiz, S. E., & Soriano, A. (1997). Design Live Loads ...
  • Kumar, S. (2002). Live loads in office buildings: Point-in-time load ...
  • Culver, C. G. (1976). Live-Load Survey Results for Office Buildings. ...
  • Harris, J. C., & Corotis, R. B. (1978). Hospital Inventory ...
  • Tapia-Hernández, E., Dominguez-Palacios, A. C., & Martínez-Ruíz, M. (2019). Live ...
  • Aggarwal, C. C. (2018). Neural Networks and Deep Learning. Springer, ...
  • Atiya, A. F. (1991). Learning algorithms for neural networks. PhD ...
  • González-Pérez, C., & Valdés-González, J. (2011). Identification of structural damage ...
  • Haykin, S. (2009). Neural Networks: a Comprehensive Foundation. Prentice-Hall, Hoboken, ...
  • Jia, D. W., & Wu, Z. Y. (2022). Structural probabilistic ...
  • Bourahla, N., Derbal, I., & Allal, N. (2014). Neural network ...
  • Abambres, M., & Lantsoght, E. O. L. (2020). Neural network-based ...
  • Mohammed, S. J., Abdel-khalek, H. A., & Hafez, S. M. ...
  • Pizarro, P. N., & Massone, L. M. (2021). Structural design ...
  • Vijyalakshmi Pai, G. A., & Rajasekaran, S. (2004). Neural networks, ...
  • Demuth, H., Beale, M., & Hagan, M. (1992). Neural network ...
  • Norgaard, M., Ravn, O., Poulsen, N., and Hansen, L. (2000). ...
  • MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), ...
  • Yu, H., & Wilamowski, B. (2011). Levenberg–Marquardt Training. Industrial Electronics ...
  • Dan Foresee, F., & Hagan, M. T. (1997). Gauss-Newton approximation ...
  • Kramer, S. L. (1996). Geotechnical earthquake engineering (1st Ed.). Pearson ...
  • Villaverde, R. (2009). Fundamental concepts of earthquake engineering (1st Ed.). ...
  • نمایش کامل مراجع